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ABSTRACT: Arithmetic in Finite/Galois field is a major aspect for many applications such as error correcting code
and cryptography. Addition and multiplication are the two basic operations in the finite field GF. The complexity
(space) analysis and efficient FPGA implementation of bit parallel Karatsuba Multiplier over GF (2m) is presented.
This 1s especially interesting for high performance systems because of its carry free property. Using Karatsuba
multiplier we can improve the performance of the process. This paper proposes an optimised  polynomial
multiplication for compact digital architectures. This concept proposes novel optimisations for the most
computationally intensive part of lattice-based cryptography constructions, 1.e., the polynomial multiplier, targeting
the high speed hardware platform. In ECC systems, polynomial multiplication is considered to be the most slow
and area consuming operation. This article proposes a novel hardware architecture for efficient field-programmable
gate array (FPGA) implementation of Finitefield multipliers for ECC. The OKA is a speed-optimized version of
the original Karatsuba. In this method, to improve the longest path delay, inputs are split into odd and even orders
mstead of the high and low parts. Proposed architecture shows an example DFG for FPGA implementation of a 2-
bit and a 4-bit binary polynomial multiplier using six-input LUTSs. As an enhancement of this work, the performance
of Karatsuba algorithm can be compared with the performance of the other algorithms developed for performing
multiplication operation. In addition, an algorithm can be developed for increasing the efficiency of multiplication
operation and reducing the cost , area and latency of process.

INTRODUCTION: Published in 1962 [2], Karatsuba-Ofman’s algorithm (KOA) was the first integer
multiplicaion method that broke the quadratic complexity barrier in positional number systems. Due to its
simplicity, its polynomial version is widely adopted to design VLSI parallel multipliers in GF(2n)-based
cryptosystems [13]-[34]. Two parameters are often used to measure the performance of a GF(2n) parallel multiplier,
namely, the space and time complexities. The space complexity is represented in terms of the total number of 2-
mput XOR and AND gates used. The corresponding time complexity is given in terms of the maximum delay
faced by a signal due to these XOR and AND gates. Symbols “TA” and “TX” are often used to represent the delays
of one 2-input AND gate and one 2-input XOR gate, respectively. The existing bit parallel GF(2n) multipliers may
be simply classified mto the following three categories according to the asymptotic space complexity of the

multiplication algorithm: quadratic, sub quadratic and hybrid multipliers. A number of quadratic multipliers have
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been proposed in the literature m which different basis representations of GF(2n) elements are used, e.g.,
polynomial, shifted polynomial, normal, dual, weakly dual, and triangular bases. Their time complexities are lower
than those of sub quadratic multipliers. The main advantage of sub quadratic multipliers 1s that their low asymptotic
space complexities make 1t possible to implement VLSI multipliers for large values of n. But when the size of
operands 1s small, e.g., 32-bit, the space complexity may not remain as the critical factor considered by a
cryptographic processor designer. Instead, the computational speed becomes the key factor. These multipliers first
perform a few KOA iterations to reduce the whole space complexities, and then a quadratic multiplication algorithm
on small input operands to achieve relatively high speed performance. By selecting different stop conditions for the
KOA iterations, the hybrid approach can provide a trade-off between the time and space complexities. Its space
complexity 1s lower than that of the original KOA multiplier.

LITERATURE SURVEY:C. P. Renteria-Mejia et.al [1] proposed a Hardware Design of FFT' Polynomial
Multipliers. In this paper, they present the design of two FFT polynomial multipliers using parallel and sequential
architectures. Parallel and sequential polynomial multipliers were optimized for throughput and area resources,
respectively. The designs are described 1 generic structural VHDI, synthesized on the Stratix
EP4SGX230KF40C2 using Quartus II V. 13, and verified using SignalTap. The hardware synthesis and
performance results show that the designed multipliers present a good area throughput trade-off and they are
suitable for high-performance scientific computing applications. Their work presents the design of two polynomial
multipliers based on FFT. In this case, they used FFT based on complex fixed-point computations and R22SDF
architecture. Parallel and sequential polynomial multipliers were optimized for throughput and area resources,
respectively. Also, the designed multipliers were parameterized for polynomials of 8, 16, 32, 64, 128, 256 and 512
coefticients. The synthesis results show that the designed polynomial multipliers use few area resources and have a
good throughput. The parallel polynomial multiplier uses 53 % more resources and its throughput is in average
1.81 times bigger than the sequential polynomial multiplier. Also, the designed multipliers carry out the polynomial
multiplication in less time than the corresponding software simulation in Maple 15, which was performed on an
Intel Core 17-3770 CPU @ 3.40 G taking into account the synthesis and hardware verification results, they conclude
that the designed multipliers are suitable for high-performance scientific computing applications [1].

Table 1. Performance results for pp and sp multipliers [1]
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Lo Sing Cheng etal [2] presents an Efficient FPGA Implementation of FFT' Based Multipliers. Finite field

multiplication 1s one of the most useful arithmetic operations and has applications in many areas such as signal
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processing, coding theory and cryptography. However, it 1s also one of the most time consuming operation in both
software and hardware, which makes it pertinent to develop a fast and efficient implementation.

EXISTING METHOD:

OVERLAP-FREE KARATSUBA ALGORITHM

The OKA is a speed-optimized version of the original Karatsuba. In this method, to improve the longest path delay,
iputs are split into odd and even orders instead of the high and low parts. Once more, it 1s assumed that A (x) and
B(x) are two polynomial in GF2n) and n= 2m. These polynomials could be rewritten as

m—1 m—|

A(X) = Z-ﬂ‘:; .1'1'. + Zﬁ];q _rz';"'l

1=l =0

m—1 m—1

B(x) = Zb:; Xy Zf)14_| xh+

1= 1=l
Assuming that y= x2, above equations can be rewritten as

m—1 m—1

Alx) = Za:.- vi+x Zug;.,.l ¥ = Ad(y) +xAL(y)

1=l =l

m—1 m—1

B(x) = bu ' +x ) b1 y' = B(y) + xBo(y)

1=l =l
where Ae and Be include the even order and Ao and Bo include the odd-order terms of polynomials A (X) and
B(x), respectively. Following a similar approach to the KA, the polynomial multiplication could be calculated as:
A(x)B(x) = (Ac(v) + xA()) x (Bo(v) + xB.(v))
= Gao(y)y +[G1(y) — G2(y) — Go(¥)]x + Go(y)

where
G[I = At'B!'
GJ = erH T A:'}{Bn + Be’}l
G, = ALB,.

Similar to the KA, the overlap-free algorithm also uses three submultipliers. However, term GO () + yG2 () has
only odd exponents (x22+1), and term Gl (y) contains only terms with even exponents (x21). Therefore, there 1s
no overlap between the components of these two terms, which allows removing an XOR gate from the critical path
of the Karatsuba multiplier. As an example, the DFG of a 4-bit OKA multiplier is shown in Fig. 3. It should be
noted that the DFG for a first-order OKA multiplier 1s similar to that of the KA, as shown in Fig. (a). As shown in
Fig, for the 4-bit multiplier, the critical path of overlap-free is one XOR gate delay shorter than a Karatsuba
multiplier. By solving the recursive equation for area and space requirements, the estimated values of the OKA

implementation are as follows:
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Fig: 2 Bit Karatsuba multiplier

LUT BASED IMPLEMENTATION:

The total number of gates for hardware implementation of the bimary polynomial multiplication algorithms for
different operand sizes 1s presented in Fig. 4(a). From this figure, it can be observed that considering small operand
sizes, the number of gates required for implementing CAs 1s lower than that of the KA. However, as the operand
size grows, the number of gates for implementing CA becomes substantially higher than Karatsuba and overlap-
free. As an example, for operand size of 409 bits, the CA requires almost 163% more gates than the Karatsuba or
overlap-free.
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Fig. 3. DFG for FPGA implementation of (a) 2- and (b) 4-bit binary polynomial multipliers using six-input LUTs.
Regardless of the different DFGs, FPGA implementation of all methods for 2- and 8-bit multipliers is the same. It

1s worth noting that this 1s a simple demonstration and actual architecture and routing is more complex.
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Another interesting point is that the number of stages required to implement recursive multipliers, including KA
and OKA, increases logarithmically with operand size rather than linearly. As an instance, in the case of the 233
bit, the first four stages recursively perform multiplication down to 15-bit multipliers. However, performing a 15-bit
multiplication requires another four stages. It is also worth noting that the overall delay of these multipliers 1s
determined by their corresponding number of stages. To compare the efficiency of algorithms, area-delay product
(ADP) was calculated for all algorithms and plotted in Fig. 4(c) where, on average, overlap-free has the minimum
and conventional has the highest ADP. Since our target platform 1s FPGAs, not digital gate-based devices, we
mvestigated on-FPGA time and space analysis of these algorithms and validated the outcome by implementing
algorithms. When it comes to the FPGA devices, the building blocks constructing most functions are lookup tables
(LUTs) and not combinational gates. The LLUTs are considered as universal gates where any function could be
represented. Therefore, in order to accurately estimate the complexity and delay analysis, these structures should
be implemented on the FPGA using the LUTs. Fig. 6 shows an example DFG for FPGA implementation of a 2-
bit and a 4-bit binary polynomial multiplier using six-input LUTs. As shown in this figure, irrespective of the number
of gates and the difference in the DFGs, the LUT-based implementations are similar. The difference between LUT
mmplementation of these algorithms in terms of performance and the number of LUTs becomes distinct as the
operand size increases. Therefore, the theoretical estimations that are conventionally used to evaluate the efficiency
of the algorithms cannot be simply extended to their actual FPGA mimplementation.

There are techniques to estimate the number of LUTs and delay for FPGA implementation of combinational
circuits. However, in a pragmatic approach, all algorithms mentioned above for various operand sizes were
mmplemented on FPGA.

PROPOSED METHOD:

VEDIC MULTIPLICATION:

VEDIC MULTIPLIER FOR 2X2 BIT MODULE:

The method is explained below for two, 2 bit numbers A and B where A = al20 and B = b1 0 as shown in Fig. 2.
Firstly, the least significant bits are multiplied which gives the least significant bit of the final product (vertical). Then,
the LSB of the multiplicand 1s multiplied with the next higher bit of the multiplier and added with, the product of
LSB of multiplier and next higher bit of the multiplicand (crosswise). The sum gives second bit of the final product
and the carry 1s added with the partial product obtained by multiplying the most significant bits to give the sum and
carry. The sum is the third corresponding bit and carry becomes the fourth bit Of the finel product. The 2X2 Vedic
multiplier module 1s implemented using four input AND gates & two half-adders which 1s displayed in its block
diagram in Fig. 3. It is found that the hardware architecture of 2x2 bit Vedic multiplier is same as the hardware
architecture of 2x2 bit conventional Array Multiplier [2]. Hence it is concluded that multiplication of 2 bit binary
numbers by Vedic method does not made significant effect in improvement of the multipliers efficiency. Very
precisely we can state that the total delay is only 2-half adder delays, after final bit products are generated, which 1s

very similar to Array multiplier. So we switch over to the implementation of 4x4 bit Vedic multiplier which uses the
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2x2 bit multiplier as a basic building block. The same method can be extended for input bits 4 & 8. But for higher
no. of bits in input, little modification is required.
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Fig.4 Block Diagram of 2x2 bit Vedic Multiplier

The 4x4 bit Vedic multiplier module 1s implemented using four 2x2 bit Vedic multiplier modules as discussed in
Fig. 4. Let™s analyze 4x4 multiplications, say A= A3 A2 A1 A0 and B= B3 B2 B1 BO0. The output line for the
multiplication result 1s - S7S65554 S3 S2 S1 SO .Let"s divide A and B into two parts, say ASA2 & Al A0 for A and
B3 B2 & B1BO0 for B. Using the fundamental of Vedic multiplication, taking two bit at a timeand using 2 bit
multiplier block, we can have the following structure for multiplication as shown n Fig. 4.
AsAs A Ao
X B;B, BB,

A 3 \"-;Z A 3 ‘-\'*l i 1 J."'
X X X
I3 [5-: &Y By B B
Ay Ay
x
["iq I“n:

Fig.5 Sample Presentation for 4x4 bit Vedic Multiplication

Each block as shown above 1s 2x2 bit Vedic multiplier. First 2x2 bit multiplier inputs are A1A0 and B1B0. The
last block 1s 2x2 bit multiplier with inputs A3 A2 and B3 B2. The middle one shows two 2x2 bit multiplier with
mputs A3 A2 & B1B0 and A1A0 & B3 B2. So the final result of multiplication, which is of 8 bit, S7 S65554 S3 S2
S1 S0. To understand the concept, the Block diagram of 4x4 bit Vedic multiplier is shown in Fig. 5. To get final
product (§7 S6 S5 S4.83 S2 S1 S0), four 2x2 bit Vedic multiplier (Fig. 3) and three 4-bit Ripple-Carry (RC) Adders
are required. The proposed Vedic multiplier can be used to reduce delay. Early literature speaks about Vedic

multipliers based on array multiplier structures. On the other hand, we proposed a new architecture, which 1s
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efficient in terms of speed. The arrangements of RC Adders shown in Fig., helps us to reduce delay. Interestingly,

8x8 Vedic multipli

er modules are implemented easily by using four 4x4 multiplier modules
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Fig.6 Block Diagram of 4x4 bit Vedic Multiplier
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CONCLUSION:

The proposed method was implemented on FPGA for different operand sizes and its performance parameters

were compared with other algorithms. Implementation results indicated that the proposed method is, on average,
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faster than Karatsuba and faster than the OKA. Comparing with state-of-the-art works also indicated that the design

has higher speed and lower ADP, which demonstrates the efficiency of the design.

FUTURE SCOPE:

As part of future work, the hierarchical storage format and related techniques will be applied to other linear algebra
operations such as matrix factorizations (e.g. LU) that have high enough complexity to benefit from this approach.
An object-oriented framework will be designed to encapsulate the ideas presented here, including polyalgorithms
and storage format independence, in a format that can easily be used by numerical math libraries and applications
for enhanced performance. A theoretical model that includes memory hierarchy behavior, processor architectural
features and algorithmic characteristics will be devised to provide the capability to analytically determine
performance costs. The analytical model would also be useful in a polyalgorithmic library for choosing the algorithm
that performs best for a given set of parameters. The performance framework for writing high-performance linear
algebra programs will be extended to cover parallel and distributed environments. Efficient methods for

parallelizing algorithms in the hierarchical formulation will be investigated.
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