An UGC-CARE Approved Group-I Journal WwwWw.Ijearst.co.in

ENGINEERING IN ADVANCED UGC Care Group-I
RESEARCH SCIENCE AND Vol.03, Issue 02
TECHNOLOGY December-2022

Pages: -1163-1177

LATENCY OPTIMIZED FINITE-FIELD MULTIPLICATION USING
LOW DENSE MODIFIED URDHVA TIRYAGBHYAM

'Govad keerthana, ‘R.S.V.S Aravind, Dr.B.Raja Rao
‘M. tech, Dept. of ECE, Eluru College of Engineering and Technology, ELURU, AP
*Assistant Professor, Dept. of ECE, Eluru College of Engineering and Technology, ELURU, AP
Professor & H.O.D, Dept. of ECE, Eluru College of Engineering and Technology, ELURU, AP

ABSTRACT: Arithmetic in Finite/Galois field is a major aspect for many applications such as error correcting code
and cryptography. Addition and multiplication are the two basic operations in the finite field GF. The complexity
(space) analysis and efficient FPGA implementation of bit parallel Karatsuba Multiplier over GF (2m) is presented.
This 1s especially interesting for high performance systems because of its carry free property. Using Karatsuba
multiplier we can improve the performance of the process. This paper proposes an optimised polynomial
multiplication for compact digital architectures. This concept proposes novel optimisations for the most
computationally intensive part of lattice-based cryptography constructions, 1.e., the polynomial multiplier, targeting
the high speed hardware platform. In ECC systems, polynomial multiplication is considered to be the most slow
and area consuming operation. This article proposes a novel hardware architecture for efficient field-programmable
gate array (FPGA) implementation of Finitefield multipliers for ECC. The OKA is a speed-optimized version of
the original Karatsuba. In this method, to improve the longest path delay, inputs are split into odd and even orders
mstead of the high and low parts. Proposed architecture shows an example DFG for FPGA implementation of a 2-
bit and a 4-bit binary polynomial multiplier using six-input LUTSs. As an enhancement of this work, the performance
of Karatsuba algorithm can be compared with the performance of the other algorithms developed for performing
multiplication operation. In addition, an algorithm can be developed for increasing the efficiency of multiplication
operation and reducing the cost , area and latency of process.

INTRODUCTION: Published in 1962 [2], Karatsuba-Ofman’s algorithm (KOA) was the first integer
multiplicaion method that broke the quadratic complexity barrier in positional number systems. Due to its
simplicity, its polynomial version is widely adopted to design VLSI parallel multipliers in GF(2n)-based
cryptosystems [13]-[34]. Two parameters are often used to measure the performance of a GF(2n) parallel multiplier,
namely, the space and time complexities. The space complexity is represented in terms of the total number of 2-
mput XOR and AND gates used. The corresponding time complexity is given in terms of the maximum delay
faced by a signal due to these XOR and AND gates. Symbols “TA” and “TX” are often used to represent the delays
of one 2-input AND gate and one 2-input XOR gate, respectively. The existing bit parallel GF(2n) multipliers may
be simply classified mto the following three categories according to the asymptotic space complexity of the

multiplication algorithm: quadratic, sub quadratic and hybrid multipliers. A number of quadratic multipliers have

Copyright @ 2022 IJEARST. All rights reserved.
INTERNATIONAL JOURNAL OF ENGINEERING IN ADVANCED RESEARCH
SCIENCE AND TECHNOLOGY
Volume.03, IssueNo.02, December-2022, Pages: 1165-1177

http://www.ijearst.co.in/

An UGC-CARE Approved Group-I Journal WwwWw.Ijearst.co.in

been proposed in the literature m which different basis representations of GF(2n) elements are used, e.g.,
polynomial, shifted polynomial, normal, dual, weakly dual, and triangular bases. Their time complexities are lower
than those of sub quadratic multipliers. The main advantage of sub quadratic multipliers 1s that their low asymptotic
space complexities make 1t possible to implement VLSI multipliers for large values of n. But when the size of
operands 1s small, e.g., 32-bit, the space complexity may not remain as the critical factor considered by a
cryptographic processor designer. Instead, the computational speed becomes the key factor. These multipliers first
perform a few KOA iterations to reduce the whole space complexities, and then a quadratic multiplication algorithm
on small input operands to achieve relatively high speed performance. By selecting different stop conditions for the
KOA iterations, the hybrid approach can provide a trade-off between the time and space complexities. Its space
complexity 1s lower than that of the original KOA multiplier.

LITERATURE SURVEY:C. P. Renteria-Mejia et.al [1] proposed a Hardware Design of FFT' Polynomial
Multipliers. In this paper, they present the design of two FFT polynomial multipliers using parallel and sequential
architectures. Parallel and sequential polynomial multipliers were optimized for throughput and area resources,
respectively. The designs are described 1 generic structural VHDI, synthesized on the Stratix
EP4SGX230KF40C2 using Quartus II V. 13, and verified using SignalTap. The hardware synthesis and
performance results show that the designed multipliers present a good area throughput trade-off and they are
suitable for high-performance scientific computing applications. Their work presents the design of two polynomial
multipliers based on FFT. In this case, they used FFT based on complex fixed-point computations and R22SDF
architecture. Parallel and sequential polynomial multipliers were optimized for throughput and area resources,
respectively. Also, the designed multipliers were parameterized for polynomials of 8, 16, 32, 64, 128, 256 and 512
coefticients. The synthesis results show that the designed polynomial multipliers use few area resources and have a
good throughput. The parallel polynomial multiplier uses 53 % more resources and its throughput is in average
1.81 times bigger than the sequential polynomial multiplier. Also, the designed multipliers carry out the polynomial
multiplication in less time than the corresponding software simulation in Maple 15, which was performed on an
Intel Core 17-3770 CPU @ 3.40 G taking into account the synthesis and hardware verification results, they conclude
that the designed multipliers are suitable for high-performance scientific computing applications [1].

Table 1. Performance results for pp and sp multipliers [1]

5 P;:-'o of r:r(:;ﬁ ?:le:lhl Time u.}l:;: 'I'Ii:c:)ughpnt {1'_:'2 sh

g 20 58 G4 1.12 1.0% 060
1& ! 127 1.21 2.11 1.19 0.G68
32 140 242 Z 30 4.24 1.29 0. 70
o4 270 a9 4. 43 T.76 137 0.7TE
128 528 a0 E.T4 15.86 1.39 0.77
2565 1042 1819 17.29 31.82 1.42 077
51z 20468 614 34.31 63 44 143 0.77
1024 4118 TI01 6E. 1% 126.22 144 0.78

Lo Sing Cheng etal [2] presents an Efficient FPGA Implementation of FFT' Based Multipliers. Finite field

multiplication 1s one of the most useful arithmetic operations and has applications in many areas such as signal

Copyright @ 2022 IJEARST. All rights reserved.
INTERNATIONAL JOURNAL OF ENGINEERING IN ADVANCED RESEARCH
SCIENCE AND TECHNOLOGY
Volume.03, IssueNo0.02, December-2022, Pages: 1165-1177

http://www.ijearst.co.in/

An UGC-CARE Approved Group-I Journal WwwWw.Ijearst.co.in

processing, coding theory and cryptography. However, it 1s also one of the most time consuming operation in both
software and hardware, which makes it pertinent to develop a fast and efficient implementation.

EXISTING METHOD:

OVERLAP-FREE KARATSUBA ALGORITHM

The OKA is a speed-optimized version of the original Karatsuba. In this method, to improve the longest path delay,
iputs are split into odd and even orders instead of the high and low parts. Once more, it 1s assumed that A (x) and
B(x) are two polynomial in GF2n) and n= 2m. These polynomials could be rewritten as

m—1 m—|

A(X) = Z-ﬂ‘:; .1'1'. + Zﬁ];q _rz';"'l

1=l =0

m—1 m—1

B(x) = Zb:; Xy Zf)14_| xh+

1= 1=l
Assuming that y= x2, above equations can be rewritten as

m—1 m—1

Alx) = Za:.- vi+x Zug;.,.l ¥ = Ad(y) +xAL(y)

1=l =l

m—1 m—1

B(x) = bu ' +x) b1 y' = B(y) + xBo(y)

1=l =l
where Ae and Be include the even order and Ao and Bo include the odd-order terms of polynomials A (X) and
B(x), respectively. Following a similar approach to the KA, the polynomial multiplication could be calculated as:
A(x)B(x) = (Ac(v) + xA()) x (Bo(v) + xB.(v))
= Gao(y)y +[G1(y) — G2(y) — Go(¥)]x + Go(y)

where
G[I = At'B!'
GJ = erH T A:'}{Bn + Be’}l
G, = ALB,.

Similar to the KA, the overlap-free algorithm also uses three submultipliers. However, term GO () + yG2 () has
only odd exponents (x22+1), and term Gl (y) contains only terms with even exponents (x21). Therefore, there 1s
no overlap between the components of these two terms, which allows removing an XOR gate from the critical path
of the Karatsuba multiplier. As an example, the DFG of a 4-bit OKA multiplier is shown in Fig. 3. It should be
noted that the DFG for a first-order OKA multiplier 1s similar to that of the KA, as shown in Fig. (a). As shown in
Fig, for the 4-bit multiplier, the critical path of overlap-free is one XOR gate delay shorter than a Karatsuba
multiplier. By solving the recursive equation for area and space requirements, the estimated values of the OKA

implementation are as follows:

Copyright @ 2022 IJEARST. All rights reserved.
INTERNATIONAL JOURNAL OF ENGINEERING IN ADVANCED RESEARCH
SCIENCE AND TECHNOLOGY
Volume.03, IssueNo.02, December-2022, Pages: 1165-1177

http://www.ijearst.co.in/

An UGC-CARE Approved Group-I Journal WwwWw.Ijearst.co.in

a0 : } ol
by — /

|)

: cl
al i N\ c?
bl — J -

C

Figl. DFG for hardware implementation of (a) 2-bit

M (In)
. C

2-hit o
a2 al ! 2-hii 3-hit

b2.b04+— KA
2-hit :)
Dl
H 2-bit |, 3-bit .
kA ,1—‘ : 3
2-bit :)Dj ' cS

|
|
|
a3.al +—= 2 hit
1
)
1
I

PSP TR LKA N

Fig: 2 Bit Karatsuba multiplier

LUT BASED IMPLEMENTATION:

The total number of gates for hardware implementation of the bimary polynomial multiplication algorithms for
different operand sizes 1s presented in Fig. 4(a). From this figure, it can be observed that considering small operand
sizes, the number of gates required for implementing CAs 1s lower than that of the KA. However, as the operand
size grows, the number of gates for implementing CA becomes substantially higher than Karatsuba and overlap-
free. As an example, for operand size of 409 bits, the CA requires almost 163% more gates than the Karatsuba or
overlap-free.

a0 —| 6-Input LUT IR "’U_é 6-Input LUT o0
b T = SN RRE ;
boa0b0x x X x| a2 { BDOX X X X :
: a3 —— J :
5 6-Input LUT : o | 6-Input LUT 6-Input LUT L&-Input LUT }—cl
5 : T T TTT T TTTTIT | [LT T :
; aII ull.’}bllhl())I()|< ! b0 a2alald x x x b2blb0 x x x b3b2x x
i ! bl—— [.
ol 6-Input LUT 2 b2 ' 6-Input LUT re2
E albl X X X X : (EI) : albl x x X X '(h)

Fig. 3. DFG for FPGA implementation of (a) 2- and (b) 4-bit binary polynomial multipliers using six-input LUTs.
Regardless of the different DFGs, FPGA implementation of all methods for 2- and 8-bit multipliers is the same. It

1s worth noting that this 1s a simple demonstration and actual architecture and routing is more complex.

Copyright @ 2022 IJEARST. All rights reserved.
INTERNATIONAL JOURNAL OF ENGINEERING IN ADVANCED RESEARCH
SCIENCE AND TECHNOLOGY
Volume.03, IssueNo0.02, December-2022, Pages: 1165-1177

http://www.ijearst.co.in/

An UGC-CARE Approved Group-I Journal WwwWw.Ijearst.co.in

Another interesting point is that the number of stages required to implement recursive multipliers, including KA
and OKA, increases logarithmically with operand size rather than linearly. As an instance, in the case of the 233
bit, the first four stages recursively perform multiplication down to 15-bit multipliers. However, performing a 15-bit
multiplication requires another four stages. It is also worth noting that the overall delay of these multipliers 1s
determined by their corresponding number of stages. To compare the efficiency of algorithms, area-delay product
(ADP) was calculated for all algorithms and plotted in Fig. 4(c) where, on average, overlap-free has the minimum
and conventional has the highest ADP. Since our target platform 1s FPGAs, not digital gate-based devices, we
mvestigated on-FPGA time and space analysis of these algorithms and validated the outcome by implementing
algorithms. When it comes to the FPGA devices, the building blocks constructing most functions are lookup tables
(LUTs) and not combinational gates. The LLUTs are considered as universal gates where any function could be
represented. Therefore, in order to accurately estimate the complexity and delay analysis, these structures should
be implemented on the FPGA using the LUTs. Fig. 6 shows an example DFG for FPGA implementation of a 2-
bit and a 4-bit binary polynomial multiplier using six-input LUTs. As shown in this figure, irrespective of the number
of gates and the difference in the DFGs, the LUT-based implementations are similar. The difference between LUT
mmplementation of these algorithms in terms of performance and the number of LUTs becomes distinct as the
operand size increases. Therefore, the theoretical estimations that are conventionally used to evaluate the efficiency
of the algorithms cannot be simply extended to their actual FPGA mimplementation.

There are techniques to estimate the number of LUTs and delay for FPGA implementation of combinational
circuits. However, in a pragmatic approach, all algorithms mentioned above for various operand sizes were
mmplemented on FPGA.

PROPOSED METHOD:

VEDIC MULTIPLICATION:

VEDIC MULTIPLIER FOR 2X2 BIT MODULE:

The method is explained below for two, 2 bit numbers A and B where A = al20 and B = b1 0 as shown in Fig. 2.
Firstly, the least significant bits are multiplied which gives the least significant bit of the final product (vertical). Then,
the LSB of the multiplicand 1s multiplied with the next higher bit of the multiplier and added with, the product of
LSB of multiplier and next higher bit of the multiplicand (crosswise). The sum gives second bit of the final product
and the carry 1s added with the partial product obtained by multiplying the most significant bits to give the sum and
carry. The sum is the third corresponding bit and carry becomes the fourth bit Of the finel product. The 2X2 Vedic
multiplier module 1s implemented using four input AND gates & two half-adders which 1s displayed in its block
diagram in Fig. 3. It is found that the hardware architecture of 2x2 bit Vedic multiplier is same as the hardware
architecture of 2x2 bit conventional Array Multiplier [2]. Hence it is concluded that multiplication of 2 bit binary
numbers by Vedic method does not made significant effect in improvement of the multipliers efficiency. Very
precisely we can state that the total delay is only 2-half adder delays, after final bit products are generated, which 1s

very similar to Array multiplier. So we switch over to the implementation of 4x4 bit Vedic multiplier which uses the

Copyright @ 2022 IJEARST. All rights reserved.
INTERNATIONAL JOURNAL OF ENGINEERING IN ADVANCED RESEARCH
SCIENCE AND TECHNOLOGY
Volume.03, IssueNo0.02, December-2022, Pages: 1165-1177

http://www.ijearst.co.in/

An UGC-CARE Approved Group-I Journal WwwWw.Ijearst.co.in

2x2 bit multiplier as a basic building block. The same method can be extended for input bits 4 & 8. But for higher
no. of bits in input, little modification is required.

SSH R =201 EERe AL

|

HHalf S ddes-

2z == =1 =

Fig.4 Block Diagram of 2x2 bit Vedic Multiplier

The 4x4 bit Vedic multiplier module 1s implemented using four 2x2 bit Vedic multiplier modules as discussed in
Fig. 4. Let™s analyze 4x4 multiplications, say A= A3 A2 A1 A0 and B= B3 B2 B1 BO0. The output line for the
multiplication result 1s - S7S65554 S3 S2 S1 SO .Let"s divide A and B into two parts, say ASA2 & Al A0 for A and
B3 B2 & B1BO0 for B. Using the fundamental of Vedic multiplication, taking two bit at a timeand using 2 bit
multiplier block, we can have the following structure for multiplication as shown n Fig. 4.
AsAs A Ao
X B;B, BB,

A 3 \"-;Z A 3 ‘-\'*l i 1 J."'
X X X
I3 [5-: &Y By B B
Ay Ay
x
["iq I“n:

Fig.5 Sample Presentation for 4x4 bit Vedic Multiplication

Each block as shown above 1s 2x2 bit Vedic multiplier. First 2x2 bit multiplier inputs are A1A0 and B1B0. The
last block 1s 2x2 bit multiplier with inputs A3 A2 and B3 B2. The middle one shows two 2x2 bit multiplier with
mputs A3 A2 & B1B0 and A1A0 & B3 B2. So the final result of multiplication, which is of 8 bit, S7 S65554 S3 S2
S1 S0. To understand the concept, the Block diagram of 4x4 bit Vedic multiplier is shown in Fig. 5. To get final
product (§7 S6 S5 S4.83 S2 S1 S0), four 2x2 bit Vedic multiplier (Fig. 3) and three 4-bit Ripple-Carry (RC) Adders
are required. The proposed Vedic multiplier can be used to reduce delay. Early literature speaks about Vedic

multipliers based on array multiplier structures. On the other hand, we proposed a new architecture, which 1s

Copyright @ 2022 IJEARST. All rights reserved.
INTERNATIONAL JOURNAL OF ENGINEERING IN ADVANCED RESEARCH
SCIENCE AND TECHNOLOGY
Volume.03, IssueNo0.02, December-2022, Pages: 1165-1177

http://www.ijearst.co.in/

An UGC-CARE Approved Group-I Journal

www.Jjearst.co.Iin

efficient in terms of speed. The arrangements of RC Adders shown in Fig., helps us to reduce delay. Interestingly,

8x8 Vedic multipli

er modules are implemented easily by using four 4x4 multiplier modules
b3b2

alda2 b1b0

aja2

b3b2 alal blb0 alal
Y v 4
2z2Vedic 2z2Vedic 2z2Vedic 2r2Vedsc
Multiplier Multiplier Multiplier Multiplier
(3-0) (3-0) (3-0)
vy v v
4 b1t Ripple Carry Adder
cal 0 0
— (3-0) (3-2) (1-0)
$ 4 4 32]
4 bit Ripple Camry Adder
9 ca2 v
L2 v l <
4 bit Ripple Carry Adder [:
(3-2) (1-0)
cal (3-0)
Yy v v v
s7 s6 55 s4 s3 s2 sl sO
Fig.6 Block Diagram of 4x4 bit Vedic Multiplier
RESULTS:
&5 1Sim (P.20131013) - [Defaultwefg*] - x
[File Edit View Simulaton Window Layout Help
D\'le ®"" ‘|MM |QRe4aunch
Instances . + 0 & X | |Objects 08 x

g@3aa

Instance and Process |

»

4§ polymul_vedic || Object Name
¥ std_logic_1164 B a0l62:0]
4 std_logic_arith 25 bol162:0]
4l std_logic_unsig B a1l162:0]

2 bil162:0]
B c00[325:0]

2] c11B25:0]
2 c01325:0]
2 opilis:ol
25 op2h1sal

Smelation Objects for polymul_vedic_

BIBEERBB| @

1,999,999 ps

Value

1,393,999 ps

< > <

S tnstanc.. 2 40| < > || = Default.wefg™ %]

Console ~O8x
= isim force add {fpolymul_vedic_163/a1} 10a -radix hex ~
1Sim>

= isim force add {fpolymui_vedic_163/b1} ba adix hex

Isim>

#run 1.00us
1Sim> hd
B Consdle] Compilatonlog @ Breakpoints [p§ Findin FiesResults |gy SearchResults

Uses unsigned decimal representation

E £ Type here to search

Sim Time: 2,000,000 ps

2318 E
)

& 20°C

~ @ 7 %0 di) ENG

Fig7: Proposed simulation result

Copyright @ 2022 IJEARST. All rights reserved.

INTERNATIONAL JOURNAL OF ENGINEERING IN ADVANCED RESEARCH

SCIENCE AND TECHNOLOGY
Volume.03, IssueNo0.02, December-2022, Pages: 1165-1177

http://www.ijearst.co.in/

An UGC-CARE Approved Group-I Journal WWwWw.Ijearst.co.in

_a |SE Project Navigator (P.20131013) - D:\Users\as\as xise - [Design Summary] - x
I File Edit View Project Source Process Tools Window Layout Help - & x
OD2EHF L XDOXwd| »2LRR2PEIA SIS ERPEL:Q
Design 08 X [Summary - ~
N 108 Properties
View: Implementation Simulation —— B}
B ® fimol o Module Level Utilization Slice Logic Utilization:
(<]
5] | Hierarchy [] Timing Constraints Humber of Slice LUTs: 1681 out of 82152 13
gl S @ [Pinout Report Number used as Logic: 1681 out of 92152 1z
== | & €3 xchshe130t-3fgg900 o [Clock Report
ke [l polymul_vedic_163 - Behavior: @ Static Timing Slice Logic Distribution:
= L | & Errors and Warnings Number of LUT Flip Flop pairs used: 1681
&l i [Parser Messages Number with an unused Flip Flop: 1681 out of 1681 100%
o # [7] Synthesis Messages Number with an unused LUT: 0 out of 1681 0%
Translation Messages Number of fully used LUT-FF pairs: 0 out of 1681 0%
'y 9
& == [1 Maj Humber of unique control sets: 0
- [Place and Route M
< > [Timing M 10 Utilization:
[Bitgen Messages Number of IOs: 978
B | B2 Mo Processes Running [2 Alllmplementation Messages Number of bonded IOBs: €52 out of 540 120% (%)
= " T £ Detailed Reports
T | Processes: polymul_vedic_153 - Behavior: Synthesis Report ~ Specific Feature Utilization:
i) L Design Summary/Reports Synthesic Report Number of DSP48Als: 100 out of 180 55%
— Design Utilities Y"TES'Sf :FD o ~
% User Constraints op ol Repo _LWARNTNG:Xst:1336 — (*) More than 100% of Device resources are used
| @ 2.4\ Synthesize - XsT Synthesis Options Summary
5 €20 Implement Design HDL Parsing
2@ Trenslete HDL Elaboration
0 Map £ HDL Synthesis
F) Place & Route N HoL EY':E"LE;" R:F“" .
€2 Generate Programming File £l Advance ynthesis m - S
o . ol Advanced HDL Synthesis Report % | | < >
& St B Design) Fles [DyLbq-p polymul_vedic_163.vhd E Design Summary El|
Console 08 X%
@
NGDBUILD done.
Process "Translate” compleced successfully
Launching Design Summary/Report Viewer...
| v
< >

Console @ Erors 1\ Warnings g Findin Files Results

H £ Type here to search . & 20°C Cloudy ~ W0 i) ENG

Fig8: Proposed Gate density

& ISE Project Navigator (P.20131013) - D:\Users\as\as.xise - [Design Summary] - X
I File Edit View Project Source Process Tools Window Layout Help - &%
DFEF L ¥phx/vwa] » 2280 2R|AZET0= LRI PELIQ
Design 08 X . 2 Summary ~ Ho clock signals found in this design ~
: W [108 Properties
[} |Vien: @ {8 tmplementaton O §5 simation o) [Module Level Utilization Asynchronous Concrol Signals Information:
Hierarchy [} Timing Constraints
] s @ [} Pinout Report Mo asynchronous control signals found in this design
) €3 xchshe150t-3Fggo0D 6 [Clock Report
% pelymul_vedic_163 - Behavior: @ static Timing Timing Summary:
Ll | & Errors and Wamings
o [@) Parser Messages
[7] Synthesis Messages
o [F] Translation Messages Minimum period: No path found
et O] Map Messages Minimum input arrival time before clock: No path found
=] Place and Route Messages Maximum output required time after clock: No path found
1< > O ssages Maximum combinational path delay: 28.510ns
0O ges
P | P2 No Processes Running B Alllmplementation Messages Timing Details:
= & Detailed Reports —
]| Processes: polymul vedic 163 - Behavior: * Synthesis Report v|| &1l values displaved in nanoseconds (ns)
Sf| - E Design Summary/Reports =
g Design Utilities Synthesis Report -
En User Constraints Top of Report Timing constraint: Default path analysis
— | #- B2 L\ Synthesize - XST Synthesis Options Summary Total number of paths / CESCination ports: $2566711701569504 / 326
=- 82D Implement Design HDL Parsing
Translate Egtglabamm" Delay: 28.510ns (Levels of Logic = 303)
Map g ynthests Souzce: a0<16> (PAD)
HDL Synthesis Report A z
€2 Place & Route Destination: c00<325> (PAD)
T2 Generate Programming File & Advanced HDL Synthesis Y
- Tammot 1 Advanced HDL SynthesisReport ¥ || € >
& Sart ®2 Design [Fles [LEd|b polymul_vedic_163.vhd E Design Summary 1]
Console w08 x
~
NGDBUILD done.
Process "Translate" completed successfully
Launching Design Summary/Report Viewer...
| v
< >

Console @ Erors 1\ Warnings [g§ Findin Files Results

H £ Type here to search E "C Cloudy

Fig: Proposes timing report

CONCLUSION:

The proposed method was implemented on FPGA for different operand sizes and its performance parameters

were compared with other algorithms. Implementation results indicated that the proposed method is, on average,

Copyright @ 2022 IJEARST. All rights reserved.
INTERNATIONAL JOURNAL OF ENGINEERING IN ADVANCED RESEARCH
SCIENCE AND TECHNOLOGY
Volume.03, IssueNo.02, December-2022, Pages: 1165-1177

http://www.ijearst.co.in/

An UGC-CARE Approved Group-I Journal WwwWw.Ijearst.co.in

faster than Karatsuba and faster than the OKA. Comparing with state-of-the-art works also indicated that the design

has higher speed and lower ADP, which demonstrates the efficiency of the design.

FUTURE SCOPE:

As part of future work, the hierarchical storage format and related techniques will be applied to other linear algebra
operations such as matrix factorizations (e.g. LU) that have high enough complexity to benefit from this approach.
An object-oriented framework will be designed to encapsulate the ideas presented here, including polyalgorithms
and storage format independence, in a format that can easily be used by numerical math libraries and applications
for enhanced performance. A theoretical model that includes memory hierarchy behavior, processor architectural
features and algorithmic characteristics will be devised to provide the capability to analytically determine
performance costs. The analytical model would also be useful in a polyalgorithmic library for choosing the algorithm
that performs best for a given set of parameters. The performance framework for writing high-performance linear
algebra programs will be extended to cover parallel and distributed environments. Efficient methods for

parallelizing algorithms in the hierarchical formulation will be investigated.

REFERENCES

[1] C. P. Renteria-Mejia, A. Lopez-Parrado, J. VelascoMedina, “Hardware Design of FFT Polynomial Multipliers”,
978-1-4799-2507-0/14/$31.00 ©2014 IEEE.

[2] Lo Sing Cheng, Ali Miri, Tet Hin Yeap, “EFFICIENT FPGA IMPLEMENTATION OF FFT' BASED
MULTIPLIERS”, 0-7803-8886-0/05/$20.00 ©2005 IEEE.

[3] E. Theochari, K. Tatas, D. J. Soudris, K. Masselos, K. Potamianos, “A REUSABLE IP FFT CORE FOR DSP
APPLICATIONS”, 0-7803-8251-X/04/$17.00 © 2004 IEEE.

[4] A.Ronisha Prakash, S.Kirubaveni, “Performance Evaluation of FFT Processor Using Conventional and Vedic
Algorithm”, 2013 IEEE International Conference on Emerging Trends in Computing, Communication and
Nanotechnology (ICECCN 2018), 978-1-4673-5036- 5/13/$31.00 © 2013 IEEE 89. [5] Ali Chamas Al Ghouwayel,
Amin Haj-Al and Zouhair El-Bazzal, “Towards a Triple Mode Common Operator FFT for SoftWare Radio
Systems”, 19th International Conference on Telecommunications (ICT 2012), 978-1- 4673-0747-5/12/$31.00
©2012 IEEE.

[6] P. D. Chidgupkar and M. T. Karad, “The Implementation of Vedic Algorithms in Digital Signal Processing”,
Global J. of Engg. Edu., volume 8, Issue no. 2, Year 2004.

[7] M. Moreno and Y. Xie, “FFT-based dense polynomial arithmetic on multicores”, 23rd Int. conf. on high perf.
Comp. systems and applic., June Year 2009, p.p. 378- 399.

[8] Sushma R. Huddar and Sudhir Rao, Kalpana M., Surabhi Mohan, “Novel High Speed Vedic Mathematics
Multiplier using Compressors”, 978-1-4673-5090- 7/13/$31.00 ©2013 IEEE.

[9] Laxman P.Thakre, Suresh Balpande, Umesh Akare, Sudhir Lande, “Performance Evaluation and Synthesis of
Multiplier used in FFT operation using Conventional and Vedic algorithms”, 978-0-7695-4246-1/10 $26.00 © 2010
IEEE.

Copyright @ 2022 IJEARST. All rights reserved.
INTERNATIONAL JOURNAL OF ENGINEERING IN ADVANCED RESEARCH
SCIENCE AND TECHNOLOGY
Volume.03, IssueNo0.02, December-2022, Pages: 1165-1177

http://www.ijearst.co.in/

An UGC-CARE Approved Group-I Journal WwwWw.Ijearst.co.in

[10] Parth Mehta, Dhanashri Gawali, “Conventional versus Vedic mathematical method for Hardware
implementation of a multiplier”, 978-0-7695-3915-7/09 $26.00 © 2009 IEEE.

[11] M. Ramalatha, “High Speed Energy Efficient ALU Design using Vedic Multiplication Techniques”, 978-1-
4244-3834-1/09/$25.00 © 2009 IEEE.

[12] Sumit Vaidya and Deepak Dandekar, “DELAY-POWER PERFORMANCE COMPARISON OF
MULTIPLIERS IN VLSI CIRCUIT DESIGN”, International Journal of Computer Networks & Communications
(IJICNC), Volume 2, Issue no.4, July Year 2010.

Copyright @ 2022 IJEARST. All rights reserved.
INTERNATIONAL JOURNAL OF ENGINEERING IN ADVANCED RESEARCH
SCIENCE AND TECHNOLOGY
Volume.03, IssueNo0.02, December-2022, Pages: 1165-1177

http://www.ijearst.co.in/

