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ABSTRACT: Arithmetic in Finite/Galois field is a major aspect for many applications such as error correcting code 

and cryptography. Addition and multiplication are the two basic operations in the finite field GF. The complexity 

(space) analysis and efficient FPGA implementation of bit parallel Karatsuba Multiplier over GF (2m) is presented. 

This is especially interesting for high performance systems because of its carry free property. Using Karatsuba 

multiplier we can improve the performance of the process. This paper proposes an optimised   polynomial 

multiplication for compact digital architectures. This concept proposes novel optimisations for the most 

computationally intensive part of lattice-based cryptography constructions, i.e., the polynomial multiplier, targeting 

the high speed hardware platform. In ECC systems, polynomial multiplication is considered to be the most slow 

and area consuming operation. This article proposes a novel hardware architecture for efficient field-programmable 

gate array (FPGA) implementation of Finitefield multipliers for ECC. The OKA is a speed-optimized version of 

the original Karatsuba. In this method, to improve the longest path delay, inputs are split into odd and even orders 

instead of the high and low parts. Proposed architecture shows an example DFG for FPGA implementation of a 2-

bit and a 4-bit binary polynomial multiplier using six-input LUTs. As an enhancement of this work, the performance 

of Karatsuba algorithm can be compared with the performance of the other algorithms developed for performing 

multiplication operation. In addition, an algorithm can be developed for increasing the efficiency of multiplication 

operation and reducing the cost , area and latency of process. 

INTRODUCTION: Published in 1962 [2], Karatsuba-Ofman’s algorithm (KOA) was the first integer 

multiplication method that broke the quadratic complexity barrier in positional number systems. Due to its 

simplicity, its polynomial version is widely adopted to design VLSI parallel multipliers in GF(2n)-based 

cryptosystems [13]-[34]. Two parameters are often used to measure the performance of a GF(2n) parallel multiplier, 

namely, the space and time complexities. The space complexity is represented in terms of the total number of 2-

input XOR and AND gates used. The corresponding time complexity is given in terms of the maximum delay 

faced by a signal due to these XOR and AND gates. Symbols “TA” and “TX” are often used to represent the delays 

of one 2-input AND gate and one 2-input XOR gate, respectively. The existing bit parallel GF(2n) multipliers may 

be simply classified into the following three categories according to the asymptotic space complexity of the 

multiplication algorithm: quadratic, sub quadratic and hybrid multipliers. A number of quadratic multipliers have 

http://www.ijearst.co.in/


An UGC-CARE Approved Group-I Journal                                                                            www.ijearst.co.in 

 

Copyright @ 2022 IJEARST. All rights reserved. 

INTERNATIONAL JOURNAL OF ENGINEERING IN ADVANCED RESEARCH 

SCIENCE AND TECHNOLOGY 
Volume.03, IssueNo.02, December-2022, Pages: 1165-1177 

been proposed in the literature in which different basis representations of GF(2n) elements are used, e.g., 

polynomial, shifted polynomial, normal, dual, weakly dual, and triangular bases. Their time complexities are lower 

than those of sub quadratic multipliers. The main advantage of sub quadratic multipliers is that their low asymptotic 

space complexities make it possible to implement VLSI multipliers for large values of n. But when the size of 

operands is small, e.g., 32-bit, the space complexity may not remain as the critical factor considered by a 

cryptographic processor designer. Instead, the computational speed becomes the key factor. These multipliers first 

perform a few KOA iterations to reduce the whole space complexities, and then a quadratic multiplication algorithm 

on small input operands to achieve relatively high speed performance. By selecting different stop conditions for the 

KOA iterations, the hybrid approach can provide a trade-off between the time and space complexities. Its space 

complexity is lower than that of the original KOA multiplier.  

LITERATURE SURVEY:C. P. Rentería-Mejía et.al [1] proposed a Hardware Design of FFT Polynomial 

Multipliers. In this paper, they present the design of two FFT polynomial multipliers using parallel and sequential 

architectures. Parallel and sequential polynomial multipliers were optimized for throughput and area resources, 

respectively. The designs are described in generic structural VHDL, synthesized on the Stratix 

EP4SGX230KF40C2 using Quartus II V. 13, and verified using SignalTap. The hardware synthesis and 

performance results show that the designed multipliers present a good area throughput trade-off and they are 

suitable for high-performance scientific computing applications. Their work presents the design of two polynomial 

multipliers based on FFT. In this case, they used FFT based on complex fixed-point computations and R22SDF 

architecture. Parallel and sequential polynomial multipliers were optimized for throughput and area resources, 

respectively. Also, the designed multipliers were parameterized for polynomials of 8, 16, 32, 64, 128, 256 and 512 

coefficients. The synthesis results show that the designed polynomial multipliers use few area resources and have a 

good throughput. The parallel polynomial multiplier uses 53 % more resources and its throughput is in average 

1.81 times bigger than the sequential polynomial multiplier. Also, the designed multipliers carry out the polynomial 

multiplication in less time than the corresponding software simulation in Maple 15, which was performed on an 

Intel Core i7-3770 CPU @ 3.40 G taking into account the synthesis and hardware verification results, they conclude 

that the designed multipliers are suitable for high-performance scientific computing applications [1]. 

Table 1. Performance results for pp and sp multipliers [1] 

 

Lo Sing Cheng et.al [2] presents an Efficient FPGA Implementation of FFT Based Multipliers. Finite field 

multiplication is one of the most useful arithmetic operations and has applications in many areas such as signal 
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processing, coding theory and cryptography. However, it is also one of the most time consuming operation in both 

software and hardware, which makes it pertinent to develop a fast and efficient implementation.  

EXISTING METHOD: 

OVERLAP-FREE KARATSUBA ALGORITHM 

The OKA is a speed-optimized version of the original Karatsuba. In this method, to improve the longest path delay, 

inputs are split into odd and even orders instead of the high and low parts. Once more, it is assumed that A(x) and 

B(x) are two polynomial in GF(2n) and n = 2m. These polynomials could be rewritten as 

 

Assuming that y = x2, above equations can be rewritten as 

 

where Ae and Be include the even order and Ao and Bo include the odd-order terms of polynomials A(X) and 

B(x), respectively. Following a similar approach to the KA, the polynomial multiplication could be calculated as: 

 

Similar to the KA, the overlap-free algorithm also uses three submultipliers. However, term G0(y) + yG2(y) has 

only odd exponents (x2n+1), and term G1(y) contains only terms with even exponents (x2n). Therefore, there is 

no overlap between the components of these two terms, which allows removing an XOR gate from the critical path 

of the Karatsuba multiplier. As an example, the DFG of a 4-bit OKA multiplier is shown in Fig. 3. It should be 

noted that the DFG for a first-order OKA multiplier is similar to that of the KA, as shown in Fig. (a). As shown in 

Fig, for the 4-bit multiplier, the critical path of overlap-free is one XOR gate delay shorter than a Karatsuba 

multiplier. By solving the recursive equation for area and space requirements, the estimated values of the OKA 

implementation are as follows: 
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Fig1. DFG for hardware implementation of (a) 2-bit 

 

 

Fig: 2 Bit Karatsuba multiplier 

 

LUT BASED IMPLEMENTATION: 

The total number of gates for hardware implementation of the binary polynomial multiplication algorithms for 

different operand sizes is presented in Fig. 4(a). From this figure, it can be observed that considering small operand 

sizes, the number of gates required for implementing CAs is lower than that of the KA. However, as the operand 

size grows, the number of gates for implementing CA becomes substantially higher than Karatsuba and overlap-

free. As an example, for operand size of 409 bits, the CA requires almost 163% more gates than the Karatsuba or 

overlap-free.  

 

Fig. 3. DFG for FPGA implementation of (a) 2- and (b) 4-bit binary polynomial multipliers using six-input LUTs. 

Regardless of the different DFGs, FPGA implementation of all methods for 2- and 8-bit multipliers is the same. It 

is worth noting that this is a simple demonstration and actual architecture and routing is more complex. 
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Another interesting point is that the number of stages required to implement recursive multipliers, including KA 

and OKA, increases logarithmically with operand size rather than linearly. As an instance, in the case of the 233 

bit, the first four stages recursively perform multiplication down to 15-bit multipliers. However, performing a 15-bit 

multiplication requires another four stages. It is also worth noting that the overall delay of these multipliers is 

determined by their corresponding number of stages. To compare the efficiency of algorithms, area–delay product 

(ADP) was calculated for all algorithms and plotted in Fig. 4(c) where, on average, overlap-free has the minimum 

and conventional has the highest ADP. Since our target platform is FPGAs, not digital gate-based devices, we 

investigated on-FPGA time and space analysis of these algorithms and validated the outcome by implementing 

algorithms. When it comes to the FPGA devices, the building  blocks constructing most functions are lookup tables 

(LUTs) and not combinational gates. The LUTs are considered as universal gates where any function could be 

represented. Therefore, in order to accurately estimate the complexity and delay analysis, these structures should 

be implemented on the FPGA using the LUTs. Fig. 6 shows an example DFG for FPGA implementation of a 2-

bit and a 4-bit binary polynomial multiplier using six-input LUTs. As shown in this figure, irrespective of the number 

of gates and the difference in the DFGs, the LUT-based implementations are similar. The difference between LUT 

implementation of these algorithms in terms of performance and the number of LUTs becomes distinct as the 

operand size increases. Therefore, the theoretical estimations that are conventionally used to evaluate the efficiency 

of the algorithms cannot be simply extended to their actual FPGA implementation. 

There are techniques to estimate the number of LUTs and delay for FPGA implementation of combinational 

circuits. However, in a pragmatic approach, all algorithms mentioned above for various operand sizes were 

implemented on FPGA.  

PROPOSED METHOD: 

VEDIC MULTIPLICATION: 

VEDIC MULTIPLIER FOR 2X2 BIT MODULE: 

The method is explained below for two, 2 bit numbers A and B where A = a1a0 and B = b1b0 as shown in Fig. 2. 

Firstly, the least significant bits are multiplied which gives the least significant bit of the final product (vertical). Then, 

the LSB of the multiplicand is multiplied with the next higher bit of the multiplier and added with, the product of 

LSB of multiplier and next higher bit of the multiplicand (crosswise). The sum gives second bit of the final product 

and the carry is added with the partial product obtained by multiplying the most significant bits to give the sum and 

carry. The sum is the third corresponding bit and carry becomes the fourth bit Of the finel product. The 2X2 Vedic 

multiplier module is implemented using four input AND gates & two half-adders which is displayed in its block 

diagram in Fig. 3. It is found that the hardware architecture of 2x2 bit Vedic multiplier is same as the hardware 

architecture of 2x2 bit conventional Array Multiplier [2]. Hence it is concluded that multiplication of 2 bit binary 

numbers by Vedic method does not made significant effect in improvement of the multiplier‟s efficiency. Very 

precisely we can state that the total delay is only 2-half adder delays, after final bit products are generated, which is 

very similar to Array multiplier. So we switch over to the implementation of 4x4 bit Vedic multiplier which uses the 
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2x2 bit multiplier as a basic building block. The same method can be extended for input bits 4 & 8. But for higher 

no. of bits in input, little modification is required. 

 

Fig.4  Block Diagram of 2x2 bit Vedic Multiplier 

 

The 4x4 bit Vedic multiplier module is implemented using four 2x2 bit Vedic multiplier modules as discussed in 

Fig. 4. Let‟s analyze 4x4 multiplications, say A= A3 A2 A1 A0 and B= B3 B2 B1 B0. The output line for the 

multiplication result is – S7S6S5S4 S3 S2 S1 S0 .Let‟s divide A and B into two parts, say A3A2 & A1 A0 for A and 

B3 B2 & B1B0 for B. Using the fundamental of Vedic multiplication, taking two bit at a timeand using 2 bit 

multiplier block, we can have the following structure for multiplication as shown in Fig. 4. 

 

Fig.5 Sample Presentation for 4x4 bit Vedic Multiplication 

 

 Each block as shown above is 2x2 bit Vedic multiplier. First 2x2 bit multiplier inputs are A1A0 and B1B0. The 

last block is 2x2 bit multiplier with inputs A3 A2 and B3 B2. The middle one shows two 2x2 bit multiplier with 

inputs A3 A2 & B1B0 and A1A0 & B3 B2. So the final result of multiplication, which is of 8 bit, S7 S6S5S4 S3 S2 

S1 S0. To understand the concept, the Block diagram of 4x4 bit Vedic multiplier is shown in Fig. 5. To get final 

product (S7 S6 S5 S4 S3 S2 S1 S0), four 2x2 bit Vedic multiplier (Fig. 3) and three 4-bit Ripple-Carry (RC) Adders 

are required. The proposed Vedic multiplier can be used to reduce delay. Early literature speaks about Vedic 

multipliers based on array multiplier structures. On the other hand, we proposed a new architecture, which is 
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efficient in terms of speed. The arrangements of RC Adders shown in Fig., helps us to reduce delay. Interestingly, 

8x8 Vedic multiplier modules are implemented easily by using four 4x4 multiplier modules  

 

 

Fig.6 Block Diagram of 4x4 bit Vedic Multiplier 

 

RESULTS: 

 

Fig7: Proposed simulation result 
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Fig8: Proposed Gate density 

 

 

 

Fig: Proposes timing report 

 

 

CONCLUSION: 

The proposed method was implemented on FPGA for different operand sizes and its performance parameters 

were compared with other algorithms. Implementation results indicated that the proposed method is, on average, 
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faster than Karatsuba and faster than the OKA.  Comparing with state-of-the-art works also indicated that the design 

has higher speed and lower ADP, which demonstrates the efficiency of the design. 

 

FUTURE SCOPE: 

As part of future work, the hierarchical storage format and related techniques will be applied to other linear algebra 

operations such as matrix factorizations (e.g. LU) that have high enough complexity to benefit from this approach. 

An object-oriented framework will be designed to encapsulate the ideas presented here, including polyalgorithms 

and storage format independence, in a format that can easily be used by numerical math libraries and applications 

for enhanced performance. A theoretical model that includes memory hierarchy behavior, processor architectural 

features and algorithmic characteristics will be devised to provide the capability to analytically determine 

performance costs. The analytical model would also be useful in a polyalgorithmic library for choosing the algorithm 

that performs best for a given set of parameters. The performance framework for writing high-performance linear 

algebra programs will be extended to cover parallel and distributed environments. Efficient methods for 

parallelizing algorithms in the hierarchical formulation will be investigated. 
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